
 

  
Abstract—Semi-supervised dimensionality reduction is an 

important research topic in many pattern recognition and 
machine learning applications. Among all the methods for 
semi-supervised dimensionality reduction, SDA and LapRLS are 
two popular ones. Though the two methods are actually the 
extensions of different supervised methods, we show in this paper 
that they can be unified into a regularized least square 
framework. However, the regularization term added to the 
framework focuses on smoothing only, it cannot fully utilize the 
underlying discriminative information which is vital for 
classification. In this paper, we propose a new effective 
semi-supervised dimensionality reduction method, called LLGDI, 
to solve the above problem. The proposed LLGDI method 
introduces a discriminative manifold regularization term by using 
the local discriminative information instead of only relying on 
neighborhood information. In this way, both the local geometrical 
and discriminative information of dataset can be preserved by the 
proposed LLGDI method. Theoretical analysis and extensive 
simulations show the effectiveness of our algorithm. The results in 
simulations demonstrate that our proposed algorithm can achieve 
great superiority compared with other existing methods.  
 

Index Terms—Dimensionality Reduction, Semi-supervised 
Learning, Local and Global Discriminative Information 
 

I. INTRODUCTION 

ealing with high-dimensional data has always been a 
major problem with the research of pattern recognition 

and machine learning. Typical applications of these include 
face recognition, document categorization, and image retrieval. 
Finding a low-dimensional representation of high-dimensional 
space, namely dimensionality reduction is thus of great 
practical importance. The goal of dimensionality reduction is to 
reduce the complexity of input space and embed 
high-dimensional space into a low-dimensional space while 
keeping most of the desired intrinsic information [1-2] [18-24]. 
Among all the dimensionality reduction techniques, Principle 
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Compent Analysis (PCA) [3] and Linear Discriminant Analysis 
(LDA) [4] are two popular methods which have been widely 
used in many classification applications. PCA pursues the 
direction of maximum variance for optimal reconstruction. 
While LDA, as a supervised method, is to find the optimal 
projection V  that maximizes the between-class scatter matrix 

bS  while minimizes the within-class scatter matrix wS  in the 
low-dimensional subspace. Due to the utilization of label 
information, LDA can achieve better classification results than 
those obtained by PCA if sufficient labeled samples are 
provided [4]. 
Though supervised methods generally outperform 
unsupervised methods, obtaining sufficient number of labeled 
samples for training can be problematic because labeling large 
number of samples is time-consuming and costly. On the other 
hand, unlabeled samples may be abundant and can easily be 
obtained in the real world. Thus, using semi-supervised 
learning methods [6-9], which incorporate both labeled and 
unlabeled samples into learning procedure, has become an 
effective option instead of only relying on supervised learning. 
Two well-known semi-supervised learning methods are GFHF 
[6] and LLGC [7]. These methods work in a tranductive way by 
propagating the label information from labeled set to unlabeled 
set via label propagation. But they cannot predict the class 
labels of new-coming samples hence suffering the 
out-of-sample problem. In contrast, semi-supervised 
dimensionality reduction methods not only reduce the 
dimensionality but also naturally solve the out-of-sample 
problem, which is more practical in real-world applications. 
Many semi-supervised dimensionality reduction have been 
proposed during the past decade. Two widely-used methods are 
Semi-supervised Discriminant Analysis (SDA) [8] and 
Laplacian Regularized Least Square (LapRLS) [9]. These 
methods share the same concept for dimensionality reduction, 
i.e. they first construct the graph Laplacian matrix to 
approximate the manifold structure by using both labeled and 
unlabeled samples. They then perform dimensionality 
reduction by adding the graph Laplacian matrix as a regularized 
term to the original objective function of LDA and Regularized 
Least Square (RLS), respectively. Hence both the 
discriminative structure embedded in the labeled samples and 
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the geometrical structure embedded in both labeled and 
unlabeled set can be preserved. Though they are initially based 
on different supervised methods, we show in this paper that 
SDA can be addressed equivalently into a regularized least 
square framework. Then, both SDA and LapRLS can be 
covered into a unified framework.  
The connection between SDA and LapRLS helps us well 
understand their relationship. In fact, both SDA and LapRLS 
can preserve the manifold smoothness embedded in both 
labeled and unlabeled set, but LapRLS is to fix a linear model 
to the labels of labeled set. Since it is essentially derived from 
regression problem instead of classification problem, LapRLS 
may not preserve more underlying discriminative information 
in the labeled set; On the other hand, under the aforementioned 
least square framework, SDA can be addressed by fixing a 
linear model to the between-class scatter matrix. But it can only 
preserve the global discriminative information, while neglects 
the local discriminative information.  
In this paper, we propose a new effective semi-supervised 
dimensionality reduction method, called LLGDI, which can 
preserve more local discriminative information. In our method, 
we introduce a discriminative manifold regularization term by 
using the local discriminative information instead of only 
relying on neighborhood information. In this way, both the 
local geometrical and discriminative information of dataset can 
be preserved by the proposed LLGDI method. The main 
contributions of this paper are summarized as follows: 
1) We address SDA into a least square framework and establish 
the connections between SDA and LapRLS.  
2) By analyzing the connections between SDA and LapRLS, 
we propose a new method, called LLGDI, which can preserve 
both the local geometrical and discriminative information of 
dataset and overcome the shortcomings of SDA and LapRLS. 
This paper is organized as follows: In Section 2, we will present 
an effective label propagation procedure. In Section 3, we will 
introduce our soft label based linear discriminant analysis 
(SL-LDA) for semi-supervised dimensionality reduction. We 
will also build a close relationship between SL-LDA and W-LS 
in this section and propose a more efficient approach for 
solving SL-LDA. The simulation results are shown in Section 4 
and the final conclusions are drawn in Section 5. 

II. BRIEF REVIEW OF THE PRIOR WORK 

A. Linear Discriminant Analysis (LDA) 
The goal of LDA is to seek an optimal projection matrix 

* D dV R ×∈  that maximizes between-class scatter matrix while 
minimizes with-class scatter matrix. Suppose we have a set of 
l  samples { }1 2, , , D l

l lX x x x R ×= ∈…  belonging to c  classes. 
Each sample is associated with a class ic  from { }1,2, ,c… . 
Denote { }1 2, , , c l

jY y y y R ×= ∈…  as the class matrix, where 
1ijy = , if jx  belongs to the ith  class; 0ijy = , otherwise. We 

also denote { } ( ) 1 2

1 2, , , T c l
jG g g g YY Y R

− ×= = ∈…  as the scaled 

class matrix, where 1ij ig l= , if jx  belongs to the ith  class; 
0ijg = , otherwise. Since TYY  is diagonal matrix, it follows 

( ) ( )1 2 1 2T T T TGG YY YY YY I
− −

= =  [14]. Then, Assuming the 
data matrix lX  are centered, the total-class, between-class and 
within-class scatter matrix tS , bS , wS  can be defined as 

( )( )

( )( )

( )( )

1

1

1

i

i

c T T
t l li x c
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μ μ μ μ
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=

= ∈

= − − =

= − − =

= − − = −

∑ ∑
∑
∑ ∑
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where il  is the number of samples in the ith class, iμ  is the 
mean of samples in the ith  class, and μ  is the mean of all 
labeled samples. Since t w bS S S= + , the goal of LDA is 
equivalent to solving the problem as:  

( ) ( )( ) 1
max T T

t bJ V Tr V S I V V S Vλ
−⎛ ⎞

= +⎜ ⎟
⎝ ⎠

.   (2) 

where Iλ  is a multiply of identify matrix added as a 
regularized term for avoiding the singularity of tS  [5]. The 
optimal projection matrix *V  are formed by eigenvectors 
corresponding to the d  largest eigenvalues of ( ) 1

t bS I Sλ −+ .  

B. Semi-supervised Discriminant Analysis (SDA) 
SDA extends the conventional LDA to preserve the geometric 
structure by adding a manifold regularized term to the objective 
function of LDA. Let { } { } ( )

1 2, , , , D l u
l u l uX X X x x x R × +

+= = ∈…  be 
the data matrix where the first l  and the remaining u  columns 
are the labeled and unlabeled samples, respectively. The 
objective function of SDA can be given by: 

( ) ( )( ) 1
max T T T

t t m bJ V Tr V S I XLX V V S Vλ λ
−⎛ ⎞

= + +⎜ ⎟
⎝ ⎠

.  (3) 

where L D W= −  is the graph Laplacian matrix associated with 
both labeled and unlabeled set [10], W  is the weight matrix 
defined as: 1ijw = , if ix  is within the k  nearest neighbor of jx  
or jx  is within the k  nearest neighbor of ix ; 0ijw = , 
otherwise, D  is a diagonal matrix satisfying 1

l u
ii ijjD w+

== ∑ , 
mλ  and tλ  are the two parameters balance the tradeoff 

between two terms. The optimal solution of SDA is then 
formed by eigenvectors of ( ) 1T

t t m bS I XLX Sλ λ
−

+ + . 
Note that in LDA and SDA, their optimal solutions are not 
unique [12]. Let *V  be the optimal solution of SDA (LDA is a 
special case of SDA by setting 0mλ = ), then, *V Ξ  is also the 
solution of SDA satisfying ( ) 1T

t m bS I XLX S V Vλ λ
−

+ + = Λ , 
where d dR ×Ξ ∈  is an arbitrary diagonal matrix and Λ  is the 
eigenvalue matrix. Hence in order to make the solution unique, 
a typical constraint can be imposed to the objective function of 
SDA as: 

( )T T
t t mV S I XLX V Iλ λ+ + =     (4) 

In this paper, we concentrate on the solution of SDA with or 
without this constraint and investigate the relationship with 
least square. We show in the following section that SDA can be 



 

analyzed under a least square framework, and based on this 
view, we establish the equivalence between least square view 
of SDA and Lap-RLS. 

III. A LEAST SQUARE VIEW OF SEMI-SUPERVISED 
DIMENSIONALITY REDUCTION 

A. Least Square Semi-supervised Discriminant Analysis 
Least square is another popular technique which has been 
widely used for regression and classification [14]. Let c lT R ×∈  
be a certain class indicator matrix and 1 cb R ×∈  be the bias term, 
the goal of least square is to fix a linear model T T

j jt V x b= +  by 
regressing lX  on T . It has been investigated that there is 
certain relationship between LDA and least square [11-13]. In 
this section, we further extend this relationship to the 
semi-supervised version and analyze SDA under a least square 
view. Specifically, let us consider a least square problem with 
both manifold term and Tikhonov term regularized (we refer it 
as LS-SDA):  

( )

2 2
1

( , ) min
l T T

j j t Fj F

T T
m

J V b V x b g V

Tr V XLX V

λ

λ

=
= + − +

+

∑    (5) 

where { }1 2, , , jG g g g= …  is the scaled class matrix defined as 
above. For convenience, we rewrite Eq. (5) in a matrix form as: 

( ) ( ) ( )
( ) ( )

, min
TT T T T

T T T
t m

J V b Tr V X b e G U V X b e G

Tr V V Tr V XLX Vλ λ

= + − + −

+ + +
 (6) 

where ( ) ( )l u l uU R + × +∈  is a diagonal matrix with the first l  and 
the remaining u  diagonal elements as 1 and 0, respectively, 

( )1 l ue R × +∈  is a unit vector with size l u+ . By setting the 
derivative w.r.t. V  and b  to zero, we have: 

( )
( )

T T T T
t m

T T T

XUX I XLX V XUT XUe b

eUe b eUG eUX V

λ λ⎧ + + = −⎪
⎨
⎪ = −
⎩

,  (7) 

Following Eq. (7), we can calculate the optimal projection 
matrix of Eq. (6) as: 

( ) 1* T T
t t m tV XL X I XLX XL Gλ λ

−
= + +     (8) 

where T T
tL U Ue eU eUe= −  is used for centering the labeled 

samples, and following Eq. (1), we have T
t tXL X S=  and 

T T
t t bXL G GL X S= . Here, if we further define T

b tH XL G= , the 
optimal solution of Eq. (6) can be rewritten as 

( ) 1* T
t m t bV S XLX I Hλ λ

−
= + + . 

B. Equivalence between LS-SDA and SDA 
We next build the equivalence between LS-SDA and SDA. 
This equivalence is based on the following theorem: 
Theorem 1 [17]: Given two matrix A  and B , then AB  and 
BA  have the same non-zero eigenvalues. For each nonzero 
eigenvalue of AB , if the corresponding eigenvector of AB  is 
v , then the corresponding eigenvector of BA  is u Bv= . 

Recall that the solution of SDA is formed by the eigenvectors 
of ( ) ( )1 1T T T

t m t b t m t b bS XLX I S S XLX I H Hλ λ λ λ
− −

+ + = + + . 
Based on Theorem 1, it has the same nonzero eigenvalues to the 
auxiliary matrix M : 

( ) 1T T T c c
b t m t bM H S XLX I H U U Rλ λ

− ×= + + = Σ ∈ .  (9) 

where TU UΣ  is the Singular Value Decomposition of M . 
According to Theorem 1 again, if U  is the eigenvectors to the 
nonzero eigenvalues of M , ( ) 1T

t m t bS XLX I H Uλ λ
−

+ +  is its 
eigenvectors. Note that ( ) 1T

t m t bS XLX I Hλ λ
−

+ +  is the 
solution of LS-SDA, we have * *

SDA LS SDAV V U−= Ξ , where 
d dR ×Ξ ∈  is any diagonal matrix. We thus develop two SDA 

methods by choosing different Ξ . Let 1 2−Ξ = Σ  and 
* * 1 2

1SDA LS SDAV V U −
−= Σ , we have 

      ( )* *
1 1
T T

SDA t m t SDAV S XLX I V Iλ λ+ + = .    (10) 

which indicates that it is the optimal solution of SDA with the 
constraint ( )T T

t m tV S XLX I V Iλ λ+ + = . For convenience, we 
referr it as SDA1; let IΞ =  and * *

2SDA LS SDAV V U−= , we have the 
following theorem: 
Theorem 2: Given the relationship, i.e. * *

2SDA LS SDAV V U−= , we 
have * * * *

2 2
T T

SDA SDA LS SDA LS SDAV V V V− −= . Accordingly, for any two 
samples ix  and jx , it follows: 

( ) ( )2 2* *
2
T T

SDA i j LS SDA i jF F
V x x V x x−− = − ,   (11)  

where ( ) ( ) ( )2 TT T
i j i j i jF

V x x x x VV x x− = − −  represents the 
Mahalanobis  distance between ix  and jx . 
The proof of Theorem 2 is in appendix A. For convenience, we 
refer it as SDA2. Following Theorem 2, it indicates that when 
applying a distance-based classifier (such as kNN classifier), 
both LS-SDA and SDA2 can achieve the same classification 
results. Hence in practice, since solving LS-SDA can be more 
efficient as it is based on a least square framework, we can first 
calculate *

LS SDAV − , then let * *
2LS SDA SDAV V− → . For SDA1, we 

need to further perform the SVD of M  of TM U U= Σ , then let 
* 1 2 *

1LS SDA SDAV U V−
− Σ → .    

C. Equivalence between LS-SDA and Lap-RLS 
Similar to LS-SDA, Lap-RLS extends the least square to its 
semi-supervised version by adding a manifold regularized 
term. The goal of Lap-RLS is to fix a linear model 

T T
j jy V x b= +  by regressing X  on Y  and simultaneously to 

preserve the manifold smoothness embedded in both labeled 
and unlabeled set. The objective function and optimal solution 
of Lap-RLS can be given as 

( )
( )

2 2
1

1*

( , ) min
l T T

j j t Fj F

T T
m

T T
t t m t

J V b V x b y V

Tr V XLX V

V S I XLX XL Y

λ

λ

λ λ

=

−

= + − +

+

= + +

∑
  (12) 

We next show that given a certain condition, the optimal 
solution obtained by LapRLS is equivalent to that of LS-SDA. 
Actually, we have the following theorem: 



 

Theorem 3: given the condition that all classes in labeled set 
have the same number of samples, i.e. 1 2 cl l l n= = = =" , the 
optimal solution of LS-SDA is equivalent to that of LapRLS. 
Proof of Theorem 3: Since the condition 1 2 cl l l n= = = ="  
holds, we have 1 21 1 1 1cl l l n= = = =" . It then follows 

1G n Y=  and we can rewrite the optimal solution of LS-SDA 
in Eq. (8) as ( ) 1* 1 T T

LS SDA t m t tV n S XLX I XL Yλ λ
−

− = + + . Here, 
if we neglect the constant 1 n , we can observe that the 
optimal solution of LS-SDA is equival to that of LapRLS as in 
Eq. (12). 

IV. LEARNING FROM LOCAL AND GLOBAL DISCRIMINATIVE 
INFORMATION 

A. Motivation  
The equivalence between LS-SDA and Lap-RLS as analyzed 
above help us well understand their connections. In fact, both 
two methods can preserve the manifold structure embedded in 
both labeled and unlabeled set.  Lap-RLS is to fix a linear 
model to the class matrix. Since it is essentially derived from 
regression problem instead of classification problem, it may not 
preserve more underlying discriminative information 
embedded in both labeled and unlabeled set; On the other hand, 
by fixing a linear model to the between-class scatter matrix, 
LS-SDA is able to preserve the global discriminative 
information, but it neglects the local discriminative information. 
Hence to solve this problem, we present a new semi-supervised 
method in this section, which arms to preserve more 
discriminative information embedding in both labeled and 
unlabeled set [16]. 

B. Integration of local discriminative information 
Let ( )k jN x  be the k  neighborhood set of jx  including itself, 
we denote { }0 1

, , ,
k

D k
j j j jX x x x R ×= ∈…  as the local data matrix 

formed by all samples in ( )k jN x , where { }1 1, , , kj j j…  is the 
index set of ( )k jN x  and 1j j= , 

1j jx x= . We also denote 
m l l l{ }1 2

, , ,
k

c k
j j j jG g g g R ×= ∈…  as the local scaled class matrix in 
( )k jN x . More specifically, let l l l l{ } ( )

1 2, , , c l u
l uG g g g R × +
+= ∈…  be 

the global scaled class matrix of both labeled and unlabeled 
samples, mjG  can be viewed as a selection from lG  as: 

m l
j jG GS=         (13) 

where ( )l u k
jS R + ×∈  is the selected matrix with each element 

satisfying ( ) 1j pq
S = , if qp i= ; ( ) 0j pq

S = , otherwise. Then, 
assuming the samples in jX  are centered, the local 
between-class and total-class scatter matrixes can be 
constructed as m mTj T

b j j j jS X G G X= , j T
t j jS X X= . The optimal local 

projection matrix and local scaled class matrix can be 
calculated simultaneously by maximizing the following 
objective function: 

l m( ) mm
l ( )l( ) l m m l

1

, max T
j j

T T TT T
j j j j j j j j j j j j jG G I

J V G Tr V X X I V V X G G X Vλ
−

=

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
                       (14) 

Theorem 4: Let ( )J V  be the objective function of LDA as Eq. 
(2), then, we have 

( ) ( )

( )

( )

1

1

1

max

max

min

T T T

T T T

T T

J V Tr XX I XG GX

Tr GX XX I XG

Tr G X X I G

λ

λ

λ

−

−

−

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
⎛ ⎞

= +⎜ ⎟
⎝ ⎠
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

.    (15) 

The proof of Theorem 4 can be seen in Appendix B. Following 
Theorem 4, by simply performing notation substitutions to Eq. 
(15), i.e. jV V→  and mjG G→ , we can rewrite Eq. (14) as: 

l m( ) m( ) m ( ) m( )1
, min

TT
j j j j j j jJ V G J G Tr G X X I Gλ

−
= = +   (16) 

However, Eq. (16) only gives a local objective function for 
calculating the optimal mjG . In order to calculate the global 
scaled class matrix lG , we sum the local objective function of 
Eq. (16) over all local patches, which can be formulated as: 

   
l( ) m ( ) m( )

l l( )l( ) l �l( )

1

1

1

min

min min

Tl u T
j jj

T Tl u T
j j jj

J G Tr G X X I G

Tr G S L S G Tr GLG

λ
−+

=

+

=

= +

= =

∑

∑
  (17) 

where l ( ) 1T
j j jL X X Iλ

−
= +  and � l

1

l u T
j j jj

L S L S+

=
= ∑ . In addition, we 

hope lG  can fix to its initial scaled class matrix G . Then, lG  
can be calculated by minimizing the following objective 
function as: 

l( ) l l�l( )2

1
min

Tl
j j mj F

J G g g Tr GLGλ
=

= − +∑    (18) 

Thus, by setting the derivative w.r.t. lG  to zero, the optimal 
solution to the problem in Eq. (18) is l �( ) 1

mG U L Gλ
−

= + .  

C. Subspace Learning for Dimensionality Reduction  
Note that in the above subsection, we obtain the optimal global 
scaled class matrix lG  by integrating both local and global 
discriminative information. Then, assuming data matrix X  is 
centered, the global between-class and total-class scatter 
matrixes can be constructed as l lT T

bS X G GX= , T
tS XX= . The 

optimal global projection matrix lV  can be calculated by 
maximizing the following objective function as: 

l( ) l ( ) l l l l l
1

max
T T TT TJ V Tr V XX I V V X G GX Vλ

−⎛ ⎞⎛ ⎞⎜ ⎟= +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
. (19) 

Theorem 5: Let ( )J V  be the objective function of LDA as Eq. 
(2), ( ),L V b  be the objective function of the following least 
square problem: 

( )
2 2, min T T

FF
L V b V X b e G Vλ= + − +   (20) 

Then it follows ( ) ( ),J V L V b= . 
Proof of Theorem 5: By setting the derivatives w.r.t. V  and b  
to zero, we have 

( )
( ) 1

T T T

T T
c c

b eG eX V ee

V XL X I XL Gλ
−

⎧ = −⎪
⎨
⎪ = +
⎩

,     (21) 



 

where ( )1 l ue R × +∈  is a unit vector and T T
cL I e e ee= −  is used 

for centering the samples by subtracting the mean of all 
samples. Hence with b  and V  in Eq. (21), the regression 
function T TV X b e G+ −  can be written as: 

( )( ) ( )
1T T T T

c c c c cV X b e G G L X XL X I XL L G N Lλ
−

+ − = + − = −   

                       (22) 
Where ( ) 1T T

c c cN L X XL X I XLλ
−

= + . By replacing V  and 
T TV X b e G+ −  in Eq. (20) with Eq. (21) and Eq. (22), we have: 

( )2 12T T T T
c c c cFF

V X b e G V Tr GL L X XL I L Gλ λ
−⎛ ⎞

+ − + = +⎜ ⎟
⎝ ⎠

  

                       (23) 
The derivation of Eq. (23) is shown in Appendix D. Note that 
X  is centered, i.e. cX XL= , then, following Eq. (23) and (15), 

we have ( ) ( ),J V L V b= .   
From Theorem 5, it shows that the cost error obtained by LDA 
is equivalent to that obtained by least square problem. Then, by 
simply performing notation substitution, i.e. lV V→ , lG G→  in 
Eq. (21), we can rewrite Eq. (19) as:   

l( ) l( ) l l l
2 2

, min
T T

FF
J V J V b V X b e G Vλ= = + − +� �   (24) 

In this paper, we propose our method by incorporating this 
linearity regularization l( ),J V b�  into Eq. (18), in which we 
calculate the global scaled class matrix, global projection 
matrix and bias term simultaneously by minimizing the 
following objective function:  

   

l l( ) l( ) l( )
l �l l l l

2 2

, , min
T

T T T
m r FF

J G V b Tr G G U G G

Tr GLG V X b e G Vλ λ η

= − −

⎛ ⎞⎛ ⎞ ⎜ ⎟+ + + − +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

�

�
  (25) 

Since our method arms to learn local and global discriminative 
information, we refer it as LLGDI. We next show how to 
calculate the optimal solution in Eq. (18). By replacing 
l l l

2 2T T

FF
V X b e G Vη+ − +�  in Eq. (25) with Eq. (24) and setting 

the derivative w.r.t. lG  to zero, we have 

   l � ( )
11T

m r c c c cG GU U L L L X XL I Lλ λ η
−−⎛ ⎞

= + + +⎜ ⎟
⎝ ⎠

.   (26) 

Then, by replacing lG  in Eq. (21) with Eq. (26), we can obtain 
the optimal projection matrix lV  and bias term b� . The basic 
steps of the proposed LLGDI method can be shown in Table 1. 

Table 1 Algorithm 
Input: 
Data matrix ( )D l uX R × +∈ , reduced matrix d  and other related 
parameters. 
Output: 
The projection matrix l D dV R ×∈ . 
Algorithm: 
1. Construct the scaled class matrix G  and the graph Laplacian matrix 
�L  as in Eq. (17). 

2. Calculate the predicted scaled class matrix lG  as in Eq. (26). 
3. Calculate the optimal projection matrix lV  by Eq. (21). 
4. Output lV . 

V. SIMULATIONS 

A. Toy Examples for Synthetic Datasets 
In this toy example, we generate a dataset with two classes, 
each follows a cycle distribution with the same core but 
different radius.. In each class, one sample is selected as labeled 
set and the remaining as unlabeled set. Since the distribution of 
two-cycle dataset is nonlinear, to handle this problem, we first 
perform KPCA to the two-moon dataset; we then use the output 
in the full-rank KPCA to train the linear methods [14]. Fig. 1 
shows the gray images of decision surfaces and boundaries 
obtained by LDA, SDA and LLGDI. The gray value of each 
pixel represents the difference of distance from the pixel to its 
nearest labeled samples in different classes after dimensionality 
reduction. The decision boundaries are then formed by the 
pixels with the values equal to 0. In this example, we set the 
reduced dimensionality as 1. From Fig. 1 we can observe that 
for the two-cycle dataset, the decision boundary learned by 
LDA cannot classify the two classes. This indicates that given 
insufficient labeled samples, LDA fails to find the precise 
boundary between different classes. In contrast, by using the 
unlabeled samples to construct the manifold term for 
preserving the geometrical structure embedded into the dataset, 
SDA can find the precise decision boundary. In addition, the 
proposed LLGDI can achieve the best performance, as the 
decision boundary learned by LLGDI is more precise than 
those obtained by SDA. The improvement is reliable due to the 
fact that LLGDI preserves both local and global discriminative 
information embedded in dataset. 

B. Classification 
For classification problem, we use 8 real-world datasets to 
evaluate the performance of methods. The detailed information 
of dataset can be shown in Table 2. For each dataset, we 
randomly select l  samples from each class as labeled set and 
u  samples as unlabeled set. The test set is then formed by the 
selected or remaining samples. The data partitioning for each 
dataset is also given in Table 2.  
Next, we compare our method with other supervised and 
semi-supervised dimensionality reduction methods. These 
methods include RLDA [5], RLS [14], SDA1 [8], SDA2, 
LS-SDA,Lap-RLS [9] and FME [15]. The simulation settings 
are as follows: For the methods that have Tikhonov regularized 
term tλ  and manifold regularized term mλ , we use 5-fold cross 
validation to determine the value of tλ  and tλ . The candidate 
set for tλ  and tλ  are { }6 3 2 1 2 3 610 ,10 ,10 ,10 ,1,10,10 ,10 ,10− − − − ; 
For LLGDI and FME, there is an addition parameter, i.e. rλ  
that balancing tradeoff between the regression form  of Eq. (24) 
and other terms, we also determine the value using 5-fold cross 
validation with the same candidate set; for the number of 
neighborhoods, we choose the same values as in other methods 
in each dataset. The training set in all datasets are preliminarily 
processed with PCA operator to eliminate the null space before 



 

performing dimensionality reduction. For supervised methods 
such as RLDA and RLS, we use only labeled set to train the 
learner. For semi-supervised dimensionality reduction 
methods, we use all the training set with both labeled and 

unlabeled set to train the learner. All algorithms used labeled 
set in the output reduced space to train a nearest neighborhood 
classifier for evaluating the classification accuracy of test set. 

 
(a)                (b)                (c) 

Fig. 1 Gray image of reduced space learned by LDA, SDA and LLGDI: two-cycle dataset (a) LDA (b) SDA (c) LLGDI
Table 2 

Dataset Information and Data Partition for Each Dataset (‘Balance’ is defined as the ratio between the number of samples in the smallest class 
and the number of samples in the latest class) 

Dataset Database Type #Samples(N) #Dim(D) #Class(c) Balanc #Labeled(l #Unlabeled(u #Test(t)
UMNIST Face 1012 1024 20 0.2857 3 8 Remains
CMU-PIE Face 11554 1024 68 0.9647 5 10 Remains 
YALE-B Face 2414 1024 38 0.9219 5 10 Remains 

MIT Face 3240 1024 10 1 2 8 30 
COIL100 Object 7200 1024 100 1 10 20 30 
ETH80 Object 3280 1024 80 1 10 20 Remains 
USPS Hand-written-digi 9298 256 10 0.4559 20 80 100 

MNIST Hand-written-digi 60000 784 10 1 20 80 100 
Table 3 

Average Classification Accuracy over 20 Random Splits on Test Set of Different Datasets (Values in the brackets show the standard derivations) 
Dataset 1NN RLS RLDA SDA1 SDA2 LapRLS LS-SDA FME LLGDI

UMNIST 87.99(2.77) 91.50(2.56) 91.51(2.56) 92.74(3.59) 92.55(1.17) 92.55(1.17) 92.55(1.17) 93.65(1.17) 94.15(1.38)
CMU-PIE 55.34(1.58) 71.39(1.60) 71.39(1.60) 73.83(2.20) 73.80(2.22) 73.80(2.22) 73.80(2.22) 75.80(6.56) 77.95(4.52) 
YALE-B 52.65(0.60) 65.70(3.85) 64.66(2.97) 69.57(1.21) 71.15(1.64) 71.15(1.64) 71.15(1.64) 73.85(1.43) 75.89(1.64) 

MIT 81.17(2.87) 83.71(1.86) 84.64(1.92) 87.00(4.66) 86.65(0.42) 86.65(0.42) 86.65(0.42) 88.92(3.69) 88.98(3.32) 
COIL100 89.89(1.33) 90.78(2.18) 90.58(1.23) 93.05(4.69) 93.16(1.47) 93.16(1.47) 93.16(1.47) 94.99(3.61) 95.63(2.62)
ETH80 67.96(3.16) 71.90(5.43) 72.88(4.22) 82.73(3.05) 81.98(4.20) 81.98(4.20) 81.98(4.20) 84.35(3.04) 85.19(2.81) 
USPS 90.84(5.82) 91.20(5.60) 91.28(5.25) 93.55(5.12) 93.16(6.25) 93.16(6.25) 93.16(6.25) 94.10(2.47) 95.56(5.47) 

MNIST 89.34(8.48) 90.58(1.23) 90.18(2.18) 91.67(1.18) 91.98(0.99) 91.98(0.99) 91.98(0.99) 92.98(0.99) 93.76(1.36) 
 
The average accuracies over 20 random splits with the above 
parameters for each dataset are shown in Table 3. From the 
simulation results, we can obtain the following observation: 1) 
the semi-supervised dimensionality reduction methods are 
better than the corresponding supervised methods. For 
example, SDA1, Lap-RLS outperform RLDA, RLS by about 
5%-10% in the Yale-B and ETH80 datasets. For other datasets, 
it can outperform by 2%-3%. This indicates that by 
incorporating the unlabeled set into the training procedure, the 
classification performance can be markedly improved, as the 
manifold structure embedded in the dataset is preserved. 2) 
LLGDI and FME deliver the accuracies much better than those 
delivered by other semi-supervised dimensionality reduction 
methods such as SDA, Lap-LDA, Lap-RLS by about 2%-3% in 
most datasets. The improvement can even achieve almost 5% in 
CMU-PIE dataset for LLGDI. This enhancement is believed to 
be true due to the reason that by taking into account the local 

discriminative information, LLGDI preserves more 
discriminative information which is good for classification. In 
addition, we find that LLGDI can deliver better result to FME 
in most datasets. 3) SDA2, Lap-RLS and LS-SDA can achieve 
the same accuracies due to reason as analyzed in Section III. 4) 
We also evaluate LLGDI and compare it with SDA1 and 
Lap-RLS by fixing the number of training set and increasing 
the number of labeled set. The simulation results can be seen in 
Fig. 3. Following Fig. 3, we can observe that with the increase 
of labeled samples, the accuracies of three methods are all 
improved. However, LLGDI is more robust to the increase of 
labeled samples, specifically in COIL100, USPS and MNIST 
datasets. Another observation is that LLGDI can achieve better 
performances than SDA1 and Lap-RLS given few labeled 
samples. The reason for it is LLGDI incorporates local 
discriminative information into learning hence is more robust 
to the number of labeled samples. 
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(e)           (f)            (g)            (h) 

Fig. 2 Accuracy v.s. the ratio between the numbers of labeled set and that of training set: (a) UMNIST dataset (b) CMU-PIE dataset (c) Yale-B 
dataset (d) MIT  dataset (e) COIL100 dataset (f) ETH80 dataset (g) USPS dataset (h) MNIST dataset 

VI. CONCLUSION 

Semi-supervised dimensionality reduction is an important 
research topic in many pattern recognition and machine 
learning applications. Among all the methods for 
semi-supervised dimensionality reduction, SDA and LapRLS 
are two popular ones. Though the two methods are actually the 
extensions of different supervised methods, we show in this 
paper that they can be unified into a regularized least square 
framework. However, the regularization term added to the 
framework focuses on smoothing only, it cannot fully utilize 
the underlying discriminative information which is vital for 
classification. In this paper, we propose a new effective 
semi-supervised dimensionality reduction method, called 
LLGDI, to solve the above problem. The proposed LLGDI 
method introduces a discriminative manifold regularization 
term by using the local discriminative information instead of 
only relying on neighborhood information. In this way, both the 
local geometrical and discriminative information of dataset can 
be preserved. Theoretical analysis and extensive simulations 
show the effectiveness of the method compared with other 
existing methods.  

APPENDIX 

A. Proof of Theorem 2 
Let the rank of auxiliary matrix M  be q , then, c qU R ×∈  is an 
orthogonal matrix formed by the eigenvectors corresponding to 
the q  nonzero eigenvalues of M . Since q c≤ , there exists an 
orthogonal matrix ( )c c qU R × −

⊥ ∈  formed by the eigenvectors 
corresponding to the c q−  zero eigenvalues of M , which 
satisfies TU U O⊥ =  and follows: 

( ) 1T T T T
b t m t b bU MU U H S XLX I H U O H U Oλ λ

−
⊥ ⊥ ⊥ ⊥ ⊥= + + = → = . 

                      (27) 

The third equation holds as ( )T
t m tS XLX Iλ λ+ +  is a positive 

definite matrix. Recalling the optimal solution of LS-LDA is 
( ) 1* T

LS SDA t m t bV S XLX I Hλ λ
−

− = + + , following Eq. (27), we 
have ( ) 1* T

LS SDA t m t bV U S XLX I H U Oλ λ
−

− ⊥ ⊥= + + = . Hence, if 
we let i , c cU U U R⊥ ×⎡ ⎤= ∈⎣ ⎦  be the orthogonal matrix satisfying 
i i iiT T
U U UU I= = , we then have 

ii* * * *

* * * *

* *

TT T
LS SDA LS SDA LS SDA LS SDA

T T T T
LS SDA LS SDA LS SDA LS SDA

T T
LS SDA LS SDA

V V V UU V

V UU V V U U V

V UU V

− − − −

− − − ⊥ ⊥ −

− −

=

= +

=

.                       (28) 
Since * *

SDA LS SDAV V U−= , following Eq. (28), we can prove 
* * * *T T
LS SDA LS SDA SDA SDAV V V V− − = . 

B. Proof of Theorem 4 
To prove Theorem 5, we first give two lemmas: 
Lemma 1: Given n nA R ×∈  and n nB R ×∈  are two positive 
semi-definite matrixes and the rank of B  is t , the for n tP R ×∈ , 
we have: 

( ) ( )1 1max maxT T
P Tr P AP P BP Tr A B

− −⎛ ⎞
=⎜ ⎟

⎝ ⎠
. 

The proof of Lemma 1 can be found in [14]. 
Lemma 2: For any matrix A , ( ) ( )1 1T TA A A I AA I Aλ λ

− −
+ = +  

holds. 
Proof of Lemma: Note ( ) ( )T TA A A I AA I Aλ λ+ = + . Then, 

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )( )
( )

1 1 1

1 1

1 1

1

T T T T

T T T

T T T

T

A A A I AA I AA I A A A I

AA I AA I A A A I

AA I A A A I A A I

AA I A

λ λ λ λ

λ λ λ

λ λ λ

λ

− − −

− −

− −

−

+ = + + +

= + + +

= + + +

= +

 

Proof of Theorem 4: According to Lemma 1, we have 

( ) ( ) 1
max T T TJ V Tr XX I XG GXλ

−⎛ ⎞
= +⎜ ⎟

⎝ ⎠
. 



 

According to the trace property, i.e. ( ) ( )Tr AB Tr BA=  and 
Lemma 2, we have 

( ) ( )( )
( )( )

( )( )( )
( )( )

( )( )

1

1

1

1

1

max

max

max

max

min

T T T

T T T

T T T

T T T

T T

J V Tr GX XX I XG

Tr GX X X X I G

Tr G X X I I X X I G

Tr GG G X X I G

Tr G X X I G

λ

λ

λ λ λ

λ λ

λ

−

−

−

−

−

= +

= +

= + − +

= − +

= +

 

The last equation holds as TGG I= , we thus prove Theorem 4. 

C. Derivation of Eq. (23) 
Let ( ) 1T T

c cA XL X I XLλ
−

= + , following Eq. (21) and (22), we 
have ( )

2 22 2T T
cF FFF

V X b e G V G N L GAλ λ+ − + = − + , 
which can be derivate as 

( )

( ) ( ) ( ) ( )
( ) ( ) ( )

( )( )

2 2

2

2

c FF
T T T T T T

c

T T T
c

T
c

G N L GA

Tr GNN G Tr GNG Tr GL G Tr GAA G

Tr GNG Tr GNG Tr GL G

Tr G L N G

λ

λ

− +

= − + +

= − +

= −

  (29) 

The second equation holds c c cL L L=  and the third equation 
holds as  

( ) ( )
( ) ( )

( ) ( )

( ) ( )( )

( )
( )

1 1

1 1

1 1

1

T T T T

T T T T
c c c c

T T T T T
c c c c c

T T T T T
c c c c c

T T T
c c c

T

Tr GAA G Tr GNN G

Tr GL X XL X I XL X I XL G

Tr GL X XL X I XL X XL X I XL G

Tr GL X XL X I XL X I XL X I XL G

Tr GL X XL X I XL G

Tr GNG

λ

λ λ

λ λ

λ λ λ

λ

− −

− −

− −

−

+

⎛ ⎞
= + + +⎜ ⎟

⎝ ⎠
⎛ ⎞

+ +⎜ ⎟
⎝ ⎠
⎛ ⎞

= + + +⎜ ⎟
⎝ ⎠
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

=

In addition, we have: 

( )
( )

( )( )
( )

( )

1

1

1

1

1

T T
c c c c c c c

T T
c c c c c c c

T T
c c c c c c c

T
c c c c c

T
c c c c

L N L L L X XL X I XL L

L L L X XL L X XL I L

L L L X XL I I L X XL I L

L L I L X XL I L

L L X XL I L

λ

λ

λ λ λ

λ

λ

−

−

−

−

−

− = − +

= − +

= − + − +

⎛ ⎞
= − − +⎜ ⎟

⎝ ⎠

= +

. (31) 

We then finish the derivation of Eq. (23). 
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